

A Brief Introduction...

- Motorola Solutions supplies a wide variety of communications systems and services:
 - Two-way radio systems
 - Public Safety Radio systems / networks
 - Professional and Commercial Radio systems / networks
 - Integrated Command and Control
 - Accessories
 - Broadband Radio systems
 - Public Safety BB radio systems / networks
 - Enterprise systems
 - WLAN radio systems / networks
 - RFID systems
 - Mobile Computing Devices
 - Advanced Data Capture Systems
- Wide-ranging experience with cellular systems, two-way radio, consumer radios (e.g., WLANs, etc.), RFID systems
 - Have divested traditional cellular infrastructure and subscriber, cable, P2P and PMP businesses...

Field Interference Experiences

- Public Notice mentions four real-world interference cases:
 - Cellular Radio and Public Safety in the 800 MHz band
 - Satellite Radio and proposed terrestrial data services
 - Unlicensed WiFi and FAA radar systems in the 5 GHz band
 - Ancillary terrestrial service (on MSS spectrum) and GPS
- Often very difficult to predict all possible interference scenarios ahead of time...
 - Systems typically work very well in isolation (e.g., PS, GPS, etc.)
 - Systems sometimes optimize different parameters (e.g., noise figure in GPS) based on operating environment and requirements at the time...
 - Interference mechanisms can be very complex (e.g., 5th order cross-modulation terms), especially with mobile systems...
 - Often difficult to even come up with full set of cases to test interference
 - Extremely difficult to anticipate all possible system combinations that could cause interference...

SMR 800 MHz Band Interference

- Interference appeared to occur in small percentage of locations (<1%)
 - However, issue eventually impacted public safety radio use...
 - Compliant frequency interleaved cellular base-stations (BSs) causing interference
 - 5th order cross-modulation products appeared to be problematic
 - Low antenna height (fill-in) cellular BSs resulted in very strong interfering signals (up to ~ -10dBm) at PS portable / mobile radios...
 - Several steps taken to address interference...
 - Use best practices to limit BS TX power to necessary levels
 - Modify frequency planning where possible
 - Use antenna polarization to limit impact where possible
 - Utilize additional front-end AGC
 - Improve IM performance of radios
 - Ultimate re-banding of 800 MHz

Wide Range of Fielded Radio Performance

- There is a very wide range of performance requirements across all of these different systems:
 - 802.11g WLAN Systems
 - 16 dB adjacent channel rejection (for r=1/2 BPSK, -1 dB for r=3/4 64-QAM)
 - 32 dB alternate channel rejection (for r=1/2 BPSK, 15 dB for r=3/4 64-QAM)
 - ~ -25 dBr OOBE levels
 - P25 Digital Public Safety Radio Systems (mission critical base site)
 - 60 dB adjacent channel rejection
 - 80 dB intermodulation rejection
 - 90 dB spurious response rejection
 - 100 dB blocker rejection
 - ~ -67 dBr OOBE levels
 - ~ 97% coverage reliability
- Largely driven by industry/customer needs, economic considerations, power and size issues... (i.e., very complex trade-offs...)
 - Public Safety radios are already very high performance radios...
 - Performance levels are improving over time...
 - Public Safety coverage reliability (~97%) significantly exceeds traditional commercial cellular coverage (of 90-95%)...

Summary of Interference Issues

- Interference scenarios are very tough to predict and avoid...
 - Often very complex interference scenarios, involving multiple signals, and/or unexpected signals... (difficult to future-proof)...
 - Many factors come into play (e.g., antenna heights, terrain, polarization, etc.)...
 - Specification of high coverage test suites is very challenging...
 - Receiver performance is only one aspect of the overall system-problem...
 - Transmitter characteristics (e.g., OOBE) are also key limiting factor...
- Inherent incentives for all players to avoid interference
 - Interference mitigation tends to be costly, especially once equipment is fielded
 - Often involves modifying multiple system aspects to address interference
 - Economics of individual markets need to be carefully considered here...
- Wide range of performance expectations in the field...
 - Protecting mission critical (e.g., life-saving) communications is paramount
 - Includes protecting additional services such as GPS...
 - Performance specs typically much more stringent on mission critical equipment...
 - Consumers traditionally more tolerant of intermittent interference in the field (e.g., WLAN experience)